Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Mol Nutr Food Res ; 68(2): e2300567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059795

RESUMO

SCOPE: Branched-chain amino acids, especially leucine, have been reported to play a role in regulating lipid metabolism. This study aims to examine the effects of leucine deprivation on hepatic lipid metabolism. METHODS AND RESULTS: C57BL/6 mice are fed with a chow diet (control group, n = 8) or a leucine-free diet (-Leu group, n = 8) for 7 days. Histology, lipidomics, targeted metabolomics, and transcriptomics are performed to analyze the liver tissue. Compared to control group, -Leu group exhibits a notably reduced liver weight, accompanied by hepatic injury, and disorders of lipid metabolism. The level of sphingomyelin (SM) is significantly increased in the liver of -Leu group, while the glycerolipids (GL) level is significantly decreased. The expression of sphingomyelin synthase 1 (SGMS1) is upregulated by leucine deprivation in a time-dependent manner, leading to hepatic SM accumulation. Moreover, leucine deprivation results in hepatic GL loss via suppressing fatty acid synthase (FASN) and acetyl-CoA carboxylase 1 (ACC1) expression. CONCLUSION: The findings demonstrate that leucine deprivation results in abnormal lipid metabolism in the liver, mainly manifested as SM accumulation and GL loss. These results provide insights into the role of leucine in regulating lipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Esfingomielinas , Camundongos , Animais , Leucina/metabolismo , Leucina/farmacologia , Esfingomielinas/farmacologia , Multiômica , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica
2.
Biochim Biophys Acta Biomembr ; 1865(7): 184197, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37394027

RESUMO

Neurotransmitter release from sympathetic terminals is a key avenue for heart regulation. Herein, presynaptic exocytotic activity was monitored in mice atrial tissue using a false fluorescent neurotransmitter FFN511, a substrate for monoamine transporters. FFN511 labeling had similarity with tyrosine hydroxylase immunostaining. High [K+]o depolarization caused FFN511 release, which was augmented by reserpine, an inhibitor of neurotransmitter uptake. However, reserpine lost the ability to increase depolarization-induced FFN511 unloading after depletion of ready releasable pool with hyperosmotic sucrose. Cholesterol oxidase and sphingomyelinase modified atrial membranes, changing in opposite manner fluorescence of lipid ordering-sensitive probe. Plasmalemmal cholesterol oxidation increased FFN511 release upon K+-depolarization and more markedly potentiated FFN511 unloading in the presence of reserpine. Hydrolysis of plasmalemmal sphingomyelin profoundly enhanced the rate of FFN511 loss due to K+-depolarization, but completely prevented potentiating action of reserpine on FFN511 unloading. If cholesterol oxidase or sphingomyelinase got access to membranes of recycling synaptic vesicles, then the enzyme effects were suppressed. Hence, a fast neurotransmitter reuptake dependent on exocytosis of vesicles from ready releasable pool occurs during presynaptic activity. This reuptake can be enhanced or inhibited by plasmalemmal cholesterol oxidation or sphingomyelin hydrolysis, respectively. These modifications of plasmalemmal (but not vesicular) lipids increase the evoked neurotransmitter release.


Assuntos
Fibrilação Atrial , Reserpina , Camundongos , Animais , Reserpina/farmacologia , Esfingomielina Fosfodiesterase , Colesterol Oxidase/farmacologia , Esfingomielinas/farmacologia , Terminações Nervosas , Neurotransmissores/farmacologia , Colesterol/farmacologia
3.
Bioconjug Chem ; 34(6): 1037-1044, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37204067

RESUMO

Sphingomyelinase (SMase), a hydrolase of sphingomyelin (SM) enriched in the outer leaflet of the plasma membrane of mammalian cells, is closely associated with the onset and development of many diseases, but the specific mechanisms of SMase on the cell structure, function, and behavior are not yet fully understood due to the complexity of the cell structure. Artificial cells are minimal biological systems constructed from various molecular components designed to mimic cellular processes, behaviors, and structures, which are excellent models for studying biochemical reactions and dynamic changes in cell membranes. In this work, we presented an artificial cell model that mimics the lipid composition and content of the outer leaflet of mammalian plasma membranes for studying the effect of SMase on cell behavior. The results confirmed that the artificial cells can respond to SM degradation by producing ceramides that enrich and alter the membrane charge and permeability, thus inducing the budding and fission of the artificial cells. Thus, the artificial cells developed here provide a powerful tool to study the mechanism of action of cell membrane lipids on cell biological behavior, paving the way for further molecular mechanism studies.


Assuntos
Células Artificiais , Esfingomielinas , Animais , Esfingomielinas/análise , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia , Ceramidas/química , Ceramidas/metabolismo , Ceramidas/farmacologia , Membrana Celular/metabolismo , Esfingomielina Fosfodiesterase/química , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/farmacologia , Mamíferos/metabolismo
4.
Life Sci ; 318: 121507, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801470

RESUMO

AIMS: Sphingomyelin is an abundant component of the presynaptic membrane and an organizer of lipid rafts. In several pathological conditions, sphingomyelin is hydrolyzed due to an upregulation and release of secretory sphingomyelinases (SMases). Herein, the effects of SMase on exocytotic neurotransmitter release were studied in the diaphragm neuromuscular junctions of mice. MAIN METHODS: Microelectrode recordings of postsynaptic potentials and styryl (FM) dyes were used to estimate neuromuscular transmission. Membrane properties were assessed with fluorescent techniques. KEY FINDINGS: Application of SMase at a low concentration (0.01 U ml-1) led to a disruption of lipid-packing in the synaptic membranes. Neither spontaneous exocytosis nor evoked neurotransmitter release (in response to single stimuli) were affected by SMase treatment. However, SMase significantly increased neurotransmitter release and the rate of fluorescent FM-dye loss from the synaptic vesicles at 10, 20 and 70 Hz stimulation of the motor nerve. In addition, SMase treatment prevented a shift of the exocytotic mode from "full-collapse" fusion to "kiss-and-run" during high-frequency (70 Hz) activity. The potentiating effects of SMase on neurotransmitter release and FM-dye unloading were suppressed when synaptic vesicle membranes were also exposed to this enzyme (i.e., stimulation occurred during SMase treatment). SIGNIFICANCE: Thus, hydrolysis of the plasma membrane sphingomyelin can enhance mobilization of synaptic vesicles and facilitate full fusion mode of exocytosis, but SMase acting on vesicular membrane had a depressant effect on the neurotransmission. Partially, the effects of SMase can be related with the changes in synaptic membrane properties and intracellular signaling.


Assuntos
Esfingomielina Fosfodiesterase , Vesículas Sinápticas , Camundongos , Animais , Vesículas Sinápticas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia , Transmissão Sináptica , Junção Neuromuscular , Neurotransmissores/metabolismo , Exocitose
5.
Food Chem Toxicol ; 170: 113467, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36241089

RESUMO

Most of the toxic effects of fumonisins can be related to sphingolipid alteration, but there is little sphingolipidomic data in animals fed fumonisins in organs other than the liver. This study aimed to measure fumonisin B1 (FB1) in kidney, lung, and brain and determine its effects on sphingolipids. Thirty chickens divided into three groups received a diet containing 20.8 mg FB1+FB2/kg for 0, 4, or 9 days. FB1 increased in kidney from 1.7 to 5.6 nmol/kg and in lung from 0.5 to 1 nmol/kg at 4 and 9 days, respectively. No FB1 was detected in brain. In kidney, sphinganine increased, C14-C16 ceramides decreased, whereas C18-C26 ceramides increased. Most of the changes in dihydroceramides, dihydrodeoxyceramides, deoxyceramides sphingomyelins, dihydrosphingomyelins, and hexosylceramides paralleled those on ceramides. In lung, sphinganine was unaffected by fumonisins, whereas sphinganine-1-phosphate increased. Other major changes corresponded to decreases in glycosylceramides. In brain, sphinganine was unchanged, whereas deoxysphinganine, sphingosine, C14-C20 ceramides, and C14-C20 sphingomyelins increased. These results revealed that alterations in sphingolipids in kidney were close to those measured in liver and could correspond to inhibition of ceramide synthase 5 activity. In contrast, effects of fumonisins in lung and brain cannot be explained by inhibition of ceramide synthase.


Assuntos
Fumonisinas , Micotoxinas , Animais , Fumonisinas/toxicidade , Esfingolipídeos/farmacologia , Galinhas , Esfingomielinas/farmacologia , Ceramidas , Esfingosina/farmacologia , Rim , Fígado , Pulmão , Encéfalo , Micotoxinas/farmacologia
6.
Exp Eye Res ; 224: 109250, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122624

RESUMO

Sphingomyelinases (SMase), enzymes that catalyze the hydrolysis of sphingomyelin to ceramide, are important sensors for inflammatory cytokines and apoptotic signaling. Studies have provided evidence that increased SMase activity can contribute to retinal injury. In most tissues, two major SMases are responsible for stress-induced increases in ceramide: acid sphingomyelinase (ASMase) and Mg2+-dependent neutral sphingomyelinase (NSMase). The purposes of the current study were to determine the localization of SMases and their substrates in the retina and optic nerve head and to investigate the effects of ocular hypertension and ischemia on ASMase and NSMase activities. Tissue and cellular localization of ASMase and NSMase were determined by immunofluorescence imaging. Tissue localization of sphingomyelin in retinas was further determined by Matrix-Assisted Laser Desorption/Ionization mass spectrometry imaging. Tissue levels of sphingomyelins and ceramide were determined by liquid chromatography with tandem mass spectrometry. Sphingomyelinase activities under basal conditions and following acute ischemic and ocular hypotensive stress were measured using the Amplex Red Sphingomyelinase Assay Kit. Our data show that ASMase is in the optic nerve head and the retinal ganglion cell layer. NSMase is in the optic nerve head, photoreceptor and retinal ganglion cell layers. Both ASMase and NSMase were identified in human induced pluripotent stem cell-derived retinal ganglion cells and optic nerve head astrocytes. The retina and optic nerve head each exhibited unique distribution of sphingomyelins with the abundance of very long chain species being higher in the optic nerve head than in the retina. Basal activities for ASMase in retinas and optic nerve heads were 54.98 ± 2.5 and 95.6 ± 19.5 mU/mg protein, respectively. Ocular ischemia significantly increased ASMase activity to 86.2 ± 15.3 mU/mg protein in retinas (P = 0.03) but not in optic nerve heads (81.1 ± 15.3 mU/mg protein). Ocular hypertension significantly increased ASMase activity to 121.6 ± 7.3 mU/mg protein in retinas (P < 0.001) and 267.0 ± 66.3 mU/mg protein in optic nerve heads (P = 0.03). Basal activities for NSMase in retinas and optic nerve heads were 12.3 ± 2.1 and 37.9 ± 8.7 mU/mg protein, respectively. No significant change in NSMase activity was measured following ocular ischemia or hypertension. Our results provide evidence that both ASMase and NSMase are expressed in retinas and optic nerve heads; however, basal ASMase activity is significantly higher than NSMase activity in retinas and optic nerve heads. In addition, only ASMase activity was significantly increased in ocular ischemia or hypertension. These data support a role for ASMase-mediated sphingolipid metabolism in the development of retinal ischemic and hypertensive injuries.


Assuntos
Hipertensão , Células-Tronco Pluripotentes Induzidas , Hipertensão Ocular , Disco Óptico , Humanos , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia , Disco Óptico/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Retina/metabolismo , Ceramidas/metabolismo , Citocinas , Isquemia
7.
Mol Nutr Food Res ; 66(22): e2200177, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36068654

RESUMO

SCOPE: Milk fat globule membrane (MFGM) is an essential component of milk. Bovine MFGM (bMFGM) has been shown to support cognitive development and increase relative concentrations of serum phospholipids. This study investigates bioavailability of bMFGM components after oral administration in two preclinical models to explore whether dietary bMFGM induces parallel changes to plasma and brain lipidomes. METHODS AND RESULTS: Transgenic APOE*3.Leiden mice (n = 18 per group) and Sprague-Dawley rats (n = 12 per group) are fed bMFGM-enriched (MFGM+) or Control diet, followed by phospholipid profile-determination in plasma, hippocampus, and prefrontal cortex tissue by targeted mass spectrometry. Multivariate analysis of lipidomic profiles demonstrates a separation between MFGM+ and Control plasma across rodents. In plasma, sphingomyelins contributed the most to the separation of lipid patterns among both models, where three sphingomyelins (d18:1/14:0, d18:1/23:0, d18:1/23:1[9Z]) are consistently higher in the circulation of MFGM+ groups. A similar trend is observed in rat prefrontal cortex, although no significant separation of the brain lipidome is demonstrated. CONCLUSION: bMFGM-enriched diet alters plasma phospholipid composition in rodents, predominantly increasing sphingomyelin levels in the systemic circulation with similar, but non-significant, trends in central brain regions. These changes may contribute to the beneficial effects of bMFGM on neurodevelopment during early life.


Assuntos
Suplementos Nutricionais , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Lipidômica , Animais , Camundongos , Ratos , Encéfalo , Gotículas Lipídicas/química , Fosfolipídeos/farmacologia , Ratos Sprague-Dawley , Esfingomielinas/farmacologia , Glicoproteínas/administração & dosagem , Glicolipídeos/administração & dosagem
8.
J Mol Neurosci ; 72(7): 1482-1499, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35727525

RESUMO

Niemann-Pick type A disease (NPA) is a rare lysosomal storage disorder caused by mutations in the gene coding for the lysosomal enzyme acid sphingomyelinase (ASM). ASM deficiency leads to the consequent accumulation of its uncatabolized substrate, the sphingolipid sphingomyelin (SM), causing severe progressive brain disease. To study the effect of the aberrant lysosomal accumulation of SM on cell homeostasis, we loaded skin fibroblasts derived from a NPA patient with exogenous SM to mimic the levels of accumulation characteristic of the pathological neurons. In SM-loaded NPA fibroblasts, we found the blockage of the autophagy flux and the impairment of the mitochondrial compartment paralleled by the altered transcription of several genes, mainly belonging to the electron transport chain machinery and to the cholesterol biosynthesis pathway. In addition, SM loading induces the nuclear translocation of the transcription factor EB that promotes the lysosomal biogenesis and exocytosis. Interestingly, we obtained similar biochemical findings in the brain of the NPA mouse model lacking ASM (ASMKO mouse) at the neurodegenerative stage. Our work provides a new in vitro model to study NPA etiopathology and suggests the existence of a pathogenic lysosome-plasma membrane axis that with an impairment in the mitochondrial activity is responsible for the cell death.


Assuntos
Doença de Niemann-Pick Tipo A , Doenças de Niemann-Pick , Animais , Apoptose , Lisossomos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/patologia , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia
9.
Molecules ; 27(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458740

RESUMO

Reactive oxygen species (ROS) generated by ultraviolet (UV) exposure cause skin barrier dysfunction, which leads to dry skin. In this study, the skin moisturizing effect of sphingomyelin-containing milk phospholipids in UV-induced hairless mice was evaluated. Hairless mice were irradiated with UVB for eight weeks, and milk phospholipids (50, 100, and 150 mg/kg) were administered daily. Milk phospholipids suppressed UV-induced increase in erythema and skin thickness, decreased transepidermal water loss, and increased skin moisture. Milk phospholipids increased the expression of filaggrin, involucrin, and aquaporin3 (AQP3), which are skin moisture-related factors. Additionally, hyaluronic acid (HA) content in the skin tissue was maintained by regulating the expression of HA synthesis- and degradation-related enzymes. Milk phospholipids alleviated UV-induced decrease in the expression of the antioxidant enzymes superoxidase dismutase1 and 2, catalase, and glutathione peroxidase1. Moreover, ROS levels were reduced by regulating heme oxygenase-1 (HO-1), an ROS regulator, through milk phospholipid-mediated activation of nuclear factor erythroid-2-related factor 2 (Nrf2). Collectively, sphingomyelin-containing milk phospholipids contributed to moisturizing the skin by maintaining HA content and reducing ROS levels in UVB-irradiated hairless mice, thereby, minimizing damage to the skin barrier caused by photoaging.


Assuntos
Envelhecimento da Pele , Esfingomielinas , Animais , Ácido Hialurônico/metabolismo , Camundongos , Camundongos Pelados , Leite , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele , Esfingomielinas/farmacologia , Raios Ultravioleta/efeitos adversos
10.
Cells ; 11(5)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269496

RESUMO

The recent discovery demonstrating that the leakage of cathepsin B from mitotic lysosomes assists mitotic chromosome segregation indicates that lysosomal membrane integrity can be spatiotemporally regulated. Unlike many other organelles, structural and functional alterations of lysosomes during mitosis remain, however, largely uncharted. Here, we demonstrate substantial differences in lysosomal proteome, lipidome, size, and pH between lysosomes that were isolated from human U2OS osteosarcoma cells either in mitosis or in interphase. The combination of pharmacological synchronization and mitotic shake-off yielded ~68% of cells in mitosis allowing us to investigate mitosis-specific lysosomal changes by comparing cell populations that were highly enriched in mitotic cells to those mainly in the G1 or G2 phases of the cell cycle. Mitotic cells had significantly reduced levels of lysosomal-associated membrane protein (LAMP) 1 and the active forms of lysosomal cathepsin B protease. Similar trends were observed in levels of acid sphingomyelinase and most other lysosomal proteins that were studied. The altered protein content was accompanied by increases in the size and pH of LAMP2-positive vesicles. Moreover, mass spectrometry-based shotgun lipidomics of purified lysosomes revealed elevated levels of sphingolipids, especially sphingomyelin and hexocylceramide, and lysoglyserophospholipids in mitotic lysosomes. Interestingly, LAMPs and acid sphingomyelinase have been reported to stabilize lysosomal membranes, whereas sphingomyelin and lysoglyserophospholipids have an opposite effect. Thus, the observed lysosomal changes during the cell cycle may partially explain the reduced lysosomal membrane integrity in mitotic cells.


Assuntos
Catepsina B , Esfingomielina Fosfodiesterase , Catepsina B/metabolismo , Segregação de Cromossomos , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Mitose , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia
11.
J Nutr Biochem ; 105: 109004, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35351615

RESUMO

Patients with inflammatory bowel diseases tend to show alteration of lipid profiles. It remains unknown whether dietary intake with specific lipids, such as phosphatidylcholine (PC) and sphingomyelin (SM), have distinguishable effects against IBD. Here, a preclinical study using dextran sulphate sodium (DSS)-induced colitis mice model was applied to explore/compare the effects by PC, and SM. Results showed that PC treatment (p.o., 30 mg/kg b.w., 15 d) exerted higher inhibitory activity than the same dosage of SM supplementation on colonic tissue lesions and pro-inflammatory cytokines expressions induced by DSS. Integrative analysis of the metabolome and microbiome indicated that PC and SM supplementation could modulate endogenous tryptophan metabolism, arginine and proline metabolism, purine metabolism, bile secretion, as well as vitamin digestion and absorption, closely correlated with their regulation on the abundance of Lactobacillus, Faecalibacterium, Dubosiella, Turicibacter, and Parasutterella communities in the gut. Based on these data, PC is a more promising candidate for preventing colitis than SM. Our findings provided a scientific foundation for further clinical research to screen more efficient dietary intervention strategy for colitis prevention.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilcolinas/metabolismo , Esfingomielinas/farmacologia
12.
Int J Pharm ; 617: 121577, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167901

RESUMO

Sphingomyelin nanosystems have already shown to be promising carriers for efficient delivery of anticancer drugs. For further application in the treatment of pancreatic tumor, the investigation on relevant in vitro models able to reproduce its physio-pathological complexity is mandatory. Accordingly, a 3D heterotype spheroid model of pancreatic tumor has been herein constructed to investigate the potential of bare and polyethylene glycol-modified lipid nanosystems in terms of their ability to penetrate the tumor mass and deliver drugs. Regardless of their surface properties, the lipid nanosystems successfully diffused through the spheroid without inducing toxicity, showing a clear safety profile. Loading of the bare nanosystems with a lipid prodrug of gemcitabine was used to evaluate their therapeutic potential. While the nanosystems were more effective than the free drug on 2D cell monocultures, this advantage, despite their efficient penetration capacity, was lost in the 3D tumor model. The latter, being able to mimic the tumor and its microenvironment, was capable to provide a more realistic information on the cell sensitivity to treatments. These results highlight the importance of using appropriate 3D tumor models as tools for proper in vitro evaluation of nanomedicine efficacy and their timely optimisation, so as to identify the best candidates for later in vivo evaluation.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Nanomedicina/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Esferoides Celulares , Esfingomielinas/farmacologia , Microambiente Tumoral
13.
Int J Pharm ; 617: 121618, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219823

RESUMO

Senescent cells accumulation can contribute to the development of several age-related diseases, including cancer. Targeting and eliminating senescence cells, would allow the development of new therapeutic approaches for the treatment of different diseases. The 4N1Ks peptide, a 10 amino acid peptide derived from TSP1 protein, combines both features by targeting the CD47 receptor present in the surface of senescent cells and demonstrating senolytic activity, thereby representing a new strategy to take into account. Nonetheless, peptide drugs are known for their biopharmaceutical issues, such as low short half-life and tendency to aggregate, which reduces their bioavailability and limits their therapeutic potential. In order to overcome this problem, herein we propose the use of biodegradable and biocompatible sphingomyelin nanosystems (SNs), decorated with this peptide for the targeting of senescent cells. In order to efficiently associate the 4N1Ks peptide to the nanosystems while exposing it on their surface for an effective targeting of senescent cells, the 4N1Ks peptide was chemically conjugated to a PEGylated hydrophobic chain. The resulting SNs-4N1Ks (SNs-Ks), were extensively characterized for their physicochemical properties, by dynamic light scattering, multiple-angle dynamic light scattering, nanoparticle tracking analysis and atomic force microscopy. The SNs-Ks demonstrated suitable features in terms of size (∼100 nm), association efficiency (87.2 ± 6.9%) and stability in different biorelevant media. Cell toxicity experiments in MCF7 cancer cells indicated an improved cytotoxic effect of SNs-Ks, decreasing cancer cells capacity to form colonies, with respect to free peptide, and an improved hemocompatibility. Lastly, senescence escape preliminary experiments demonstrated the improvement of SNs-Ks senolytic activity of in chemotherapy-induced senescence model of breast cancer cells. Therefore, these results demonstrate for the first time the potential of the combination of SNs with 4N1Ks peptide for the development of innovative senolytic therapies to battle cancer.


Assuntos
Antineoplásicos , Trombospondina 1 , Antineoplásicos/química , Senescência Celular , Peptídeos/farmacologia , Esfingomielinas/farmacologia , Trombospondina 1/farmacologia
14.
Biochim Biophys Acta Biomembr ; 1864(1): 183763, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506799

RESUMO

Doxorubicin (DOX) is one of the most efficient antitumor drugs employed in numerous cancer therapies. Its incorporation into lipid-based nanocarriers, such as liposomes, improves the drug targeting into tumor cells and reduces drug side effects. The carriers' lipid composition is expected to affect the interactions of DOX and its partitioning into liposomal membranes. To get a rational insight into this aspect and determine promising lipid compositions, we use numerical simulations, which provide unique information on DOX-membrane interactions at the atomic level of resolution. In particular, we combine classical molecular dynamics simulations and free energy calculations to elucidate the mechanism of penetration of a protonated Doxorubicin molecule (DOX+) into potential liposome membranes, here modeled as lipid bilayers based on mixtures of phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol lipid molecules, of different compositions and lipid phases. Moreover, we analyze DOX+ partitioning into relevant regions of SM-based lipid bilayer systems using a combination of free energy methods. Our results show that DOX+ penetration and partitioning are facilitated into less tightly packed SM-based membranes and are dependent on lipid composition. This work paves the way to further investigations of optimal formulations for lipid-based carriers, such as those associated with pH-responsive membranes.


Assuntos
Doxorrubicina/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Esfingomielinas/química , Colesterol/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Entropia , Humanos , Bicamadas Lipídicas/farmacologia , Lipossomos/química , Lipossomos/farmacologia , Lipídeos de Membrana/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Esfingomielinas/farmacologia
15.
Am J Physiol Cell Physiol ; 321(3): C535-C548, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288724

RESUMO

Extracellular vesicles (EVs) contain biological molecules and are secreted by cells into the extracellular milieu. The endothelial sodium channel (EnNaC) plays an important role in modulating endothelial cell stiffness. We hypothesized EVs secreted from human aortic endothelial cells (hAoECs) positively regulate EnNaC in an autocrine-dependent manner. A comprehensive lipidomic analysis using targeted mass spectrometry was performed on multiple preparations of EVs isolated from the conditioned media of hAoECs or complete growth media of these cells. Cultured hAoECs challenged with EVs isolated from the conditioned media of these cells resulted in an increase in EnNaC activity when compared with the same concentration of media-derived EVs or vehicle alone. EVs isolated from the conditioned media of hAoECs but not human fibroblast cells were enriched in MARCKS-like protein 1 (MLP1). The pharmacological inhibition of the negative regulator of MLP1, protein kinase C, in cultured hAoECs resulted in an increase in EV size and release compared with vehicle or pharmacological inhibition of protein kinase D. The MLP1-enriched EVs increased the density of actin filaments in cultured hAoECs compared with EVs isolated from human fibroblast cells lacking MLP1. We quantified 141 lipids from glycerolipids, glycerophospholipids, and sphingolipids in conditioned media EVs that represented twice the number found in control media EVs. The concentrations of sphingomyelin, lysophosphatidylcholine and phosphatidylethanolamine were higher in conditioned media EVs. These results provide the first evidence for EnNaC regulation in hAoECs by EVs and provide insight into a possible mechanism involving MLP1, unsaturated lipids, and bioactive lipids.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Lisofosfatidilcolinas/metabolismo , Proteínas dos Microfilamentos/genética , Fosfatidiletanolaminas/metabolismo , Esfingomielinas/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Aorta/citologia , Aorta/metabolismo , Comunicação Autócrina , Proteínas de Ligação a Calmodulina/metabolismo , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/química , Expressão Gênica , Glicerofosfolipídeos/metabolismo , Humanos , Lipidômica/métodos , Lisofosfatidilcolinas/farmacologia , Proteínas dos Microfilamentos/metabolismo , Fosfatidiletanolaminas/farmacologia , Cultura Primária de Células , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Esfingomielinas/farmacologia
16.
J Gen Virol ; 102(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956593

RESUMO

Host cell lipids play a pivotal role in the pathogenesis of respiratory virus infection. However, a direct comparison of the lipidomic profile of influenza virus and rhinovirus infections is lacking. In this study, we first compared the lipid profile of influenza virus and rhinovirus infection in a bronchial epithelial cell line. Most lipid features were downregulated for both influenza virus and rhinovirus, especially for the sphingomyelin features. Pathway analysis showed that sphingolipid metabolism was the most perturbed pathway. Functional study showed that bacterial sphingomyelinase suppressed influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, but promoted rhinovirus replication. These findings suggest that sphingomyelin pathway can be a potential target for antiviral therapy, but should be carefully evaluated as it has opposite effects on different respiratory viruses. Furthermore, the differential effect of sphingomyelinase on rhinovirus and influenza virus may explain the interference between rhinovirus and influenza virus infection.


Assuntos
Orthomyxoviridae/efeitos dos fármacos , Rhinovirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Esfingomielinas/farmacologia , Animais , Broncopatias/virologia , Linhagem Celular , Cães , Células Epiteliais/virologia , Humanos , Influenza Humana , Lipidômica , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/tratamento farmacológico , Esfingomielina Fosfodiesterase , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
17.
Sci Rep ; 10(1): 20580, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239740

RESUMO

Determining mechanisms that naturally protect species from developing cancer is critical in order to prevent and treat cancer. Here, we describe a novel cancer-suppressing mechanism, via the secretion of bioactive factors by mammary cells, that is present in domesticated mammals with a low mammary cancer incidence. Specifically, these bioactive factors induced triple-negative breast cancer cell (TNBC) death in vitro and reduced tumorigenicity in a xenograft TNBC mouse model in vivo. RNA deep sequencing showed significant downregulation of genes associated with breast cancer progression in secretome-cultured TNBC cells. Further in-depth multi-omics analysis identified sphingomyelins as key secreted factors, and their role was confirmed via inhibition of the sphingomyelin signaling pathway. We speculate that secreted sphingomyelins in the mammary gland of mammals with a naturally low incidence of mammary cancer mediate the elimination of cancer cells. This study contributes to the growing list of protective mechanisms identified in cancer-proof species.


Assuntos
Neoplasias da Mama/metabolismo , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Cavalos , Humanos , Incidência , Camundongos , Camundongos Nus , Transdução de Sinais/genética , Esfingomielinas/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biomolecules ; 10(7)2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708453

RESUMO

The structures of bioactive polar lipids (PLs) of Irish ale with potent antithrombotic and cardioprotective properties were elucidated. Ale PL was fractionated by preparative thin layer chromatography (TLC) into subclasses, and their antithrombotic effect was assessed against human platelet aggregation induced by the pro-inflammatory mediator, platelet-activating factor (PAF). The fatty acid content and the overall structures of ale PL were elucidated by liquid chromatography mass spectrometry (LC-MS). Phosphatidylcholines (PC) and molecules of the sphingomyelin (SM) family exhibited the strongest anti-PAF effects, followed by phosphatidylethanolamines (PE). PC contained higher amounts of omega-3 polyunsaturated fatty acids (n-3 PUFA) and thus the lowest n-6/n-3 ratio. Bioactive diacyl and alkyl-acyl PC and PE molecules bearing n-3 PUFA at their sn-2 position, especially docosahexaenoic acid (DHA) and α-linolenic acid (ALA) but mostly oleic acid (OA), were identified in both PC and PE subclasses. Eicosapentaenoic acid (EPA) was present only in bioactive PC molecules and not in PE, explaining the lower anti-PAF effects of PE. Bioactive sphingolipid and glycolipid molecules with reported anti-inflammatory and anti-tumour properties, such as specific ceramides and glucosylcerebrosides with sphingosine, phytosphingosine and dihydrosphingosine bases but also specific monogalactodiglycerides and SM species bearing ALA at their sn-2 position, were identified in the SM subclass, providing a rational for its strong bioactivities against the PAF pathway. Further studies are required on the health benefits of bioactive PL from beer and brewery by-products.


Assuntos
Cerveja/análise , Fator de Ativação de Plaquetas/antagonistas & inibidores , Inibidores da Agregação Plaquetária/análise , Inibidores da Agregação Plaquetária/farmacologia , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/farmacologia , Humanos , Fosfatidilcolinas/análise , Fosfatidilcolinas/farmacologia , Fosfatidiletanolaminas/análise , Fosfatidiletanolaminas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Esfingomielinas/análise , Esfingomielinas/farmacologia
19.
Molecules ; 25(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326262

RESUMO

Free radical driven lipid peroxidation is a chain reaction which can lead to oxidative degradation of biological membranes. Propagation vs. termination rates of peroxidation in biological membranes are determined by a variety of factors including fatty acyl chain composition, presence of antioxidants, as well as biophysical properties of mono- or bilayers. Sphingomyelins (SMs), a class of sphingophospholipids, were previously described to inhibit lipid oxidation most probably via the formation of H-bond network within membranes. To address the "antioxidant" potential of SMs, we performed LC-MS/MS analysis of model SM/glycerophosphatidylcholine (PC) liposomes with different SM fraction after induction of radical driven lipid peroxidation. Increasing SM fraction led to a strong suppression of lipid peroxidation. Electrochemical oxidation of non-liposomal SMs eliminated the observed effect, indicating the importance of membrane structure for inhibition of peroxidation propagation. High resolution MS analysis of lipid peroxidation products (LPPs) observed in in vitro oxidized SM/PC liposomes allowed to identify and relatively quantify SM- and PC-derived LPPs. Moreover, mapping quantified LPPs to the known pathways of lipid peroxidation allowed to demonstrate significant decrease in mono-hydroxy(epoxy) LPPs relative to mono-keto derivatives in SM-rich liposomes. The results presented here illustrate an important property of SMs in biological membranes, acting as "biophysical antioxidant". Furthermore, a ratio between mono-keto/mono-hydroxy(epoxy) oxidized species can be used as a marker of lipid peroxidation propagation in the presence of different antioxidants.


Assuntos
Cromatografia Líquida , Peroxidação de Lipídeos/efeitos dos fármacos , Esfingomielinas/química , Esfingomielinas/farmacologia , Espectrometria de Massas em Tandem , Antioxidantes/química , Antioxidantes/farmacologia , Eletroquímica , Radicais Livres/química , Lipossomos/química , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
20.
J Nutr Biochem ; 79: 108351, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32007663

RESUMO

Milk sphingomyelin (SM), a polar lipid (PL) component of milk fat globule membranes, is protective against dyslipidemia. However, it is unclear whether ingestion of milk PLs protect against atherosclerosis. To determine this, male LDLr-/- mice (age 6 weeks) were fed ad libitum either a high-fat, added-cholesterol diet (CTL; 45% kcal from fat, 0.2% cholesterol by weight; n=15) or the same diet supplemented with 1% milk PL (1% MPL; n=15) or 2% milk PL (2% MPL; n=15) added by weight from butter serum. After 14 weeks on diets, mice fed 2% MPL had significantly lower serum cholesterol (-51%) compared to CTL (P<.01), with dose-dependent effects in lowering VLDL- and LDL-cholesterol. Mice fed 2% MPL displayed lower inflammatory markers in the serum, liver, adipose and aorta. Notably, milk PLs reduced atherosclerosis development in both the thoracic aorta and the aortic root, with 2% MPL-fed mice having significantly lower neutral lipid plaque size by 59% (P<.01) and 71% (P<.02) compared to CTL, respectively. Additionally, the 2% MPL-fed mice had greater relative abundance of Bacteroidetes, Actinobacteria and Bifidobacterium, and lower Firmicutes in cecal feces compared to CTL. Milk PL feeding resulted in significantly different microbial communities as demonstrated by altered beta diversity indices. In summary, 2% MPL strongly reduced atherogenic lipoprotein cholesterol, modulated gut microbiota, lowered inflammation and attenuated atherosclerosis development. Thus, milk PL content may be important to consider when choosing dairy products as foods for cardiovascular disease prevention.


Assuntos
Aterosclerose/prevenção & controle , Colesterol/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Lipoproteínas/metabolismo , Leite/química , Esfingomielinas/farmacologia , Animais , Aterosclerose/metabolismo , Colesterol/sangue , Colesterol na Dieta/farmacologia , Dieta Hiperlipídica , Dieta Ocidental , Fezes/microbiologia , Inflamação/metabolismo , Lipoproteínas/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Leite/metabolismo , Placa Aterosclerótica/metabolismo , Receptores de LDL/metabolismo , Esfingomielinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...